A skew-symmetric energy and entropy stable formulation of the compressible Euler equations
نویسندگان
چکیده
We show that a specific skew-symmetric form of nonlinear hyperbolic problems leads to energy and entropy bounds. Next, we exemplify by considering the compressible Euler equations in primitive variables, transform them how obtain estimates. Finally formulation lead stable discrete approximations if scheme is formulated on summation-by-parts form.
منابع مشابه
Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations
Centered numerical fluxes can be constructed for compressible Euler equations which preserve kinetic energy in the semi-discrete finite volume scheme. The essential feature is that the momentum flux should be of the form f m j+ 1 2 = p̃j+ 1 2 +uj+ 1 2 f ρ j+ 2 where uj+ 2 = (uj+uj+1)/2 and p̃j+ 1 2 , f ρ j+ 1 2 are any consistent approximations to the pressure and the mass flux. This scheme thus ...
متن کاملA Hamiltonian Vorticity-dilatation Formulation of the Compressible Euler Equations
Using the Hodge decomposition on bounded domains the compressible Euler equations of gas dynamics are reformulated using a density weighted vorticity and dilatation as primary variables, together with the entropy and density. This formulation is an extension to compressible flows of the well-known vorticity-stream function formulation of the incompressible Euler equations. The Hamiltonian and a...
متن کاملOn Skew-Symmetric Splitting and Entropy Conservation Schemes for the Euler Equations
The Tadmor type of entropy conservation formulation for the Euler equations and various skewsymmetric splittings of the inviscid flux derivatives are discussed. Numerical stability of high order central and Padé type (centered compact) spatial discretization is enhanced through the application of these formulations. Numerical test on a 2-D vortex convection problem indicates that the stability ...
متن کاملEntropy Stable Schemes for Compressible Euler Equations Deep Ray and Praveen Chandrashekar
A novel numerical flux for the Euler equations which is consistent for kinetic energy and entropy condition was proposed recently [1]. This flux makes use of entropy variable based matrix dissipation which can be shown to satisfy an entropy inequality. For hypersonic flows a blended scheme is proposed which gives carbuncle free solutions for blunt body flows while still giving accurate resoluti...
متن کاملGlobal Entropy Solutions to Exothermically Reacting, Compressible Euler Equations
The global existence of entropy solutions is established for the compressible Euler equations for one-dimensional or plane-wave flow of an ideal gas, which undergoes a one-step exothermic chemical reaction under Arrhenius-type kinetics. We assume that the reaction rate is bounded away from zero and the total variation of the initial data is bounded by a parameter that grows arbitrarily large as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2022
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2022.111573